Algorithmic Properties of Polynomial Rings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Algorithmic Properties of Polynomial Rings

In this paper we investigate how algorithms for computing heights, radicals, unmixed and primary decompositions of ideals can be lifted from a Noetherian commutative ring R to polynomial rings over R. It is a standard problem in mathematics to study which properties of a mathematical structure are preserved in derived structures. A typical result of this kind is the Hilbert Basis Theorem which ...

متن کامل

An Algorithmic Proof of Suslin’s Stability Theorem over Polynomial Rings

Let k be a field. Then Gaussian elimination over k and the Euclidean division algorithm for the univariate polynomial ring k[x] allow us to write any matrix in SLn(k) or SLn(k[x]), n ≥ 2, as a product of elementary matrices. Suslin’s stability theorem states that the same is true for the multivariate polynomial ring SLn(k[x1, . . . , xm]) with n ≥ 3. As Gaussian elimination gives us an algorith...

متن کامل

Polynomial Rings over Pseudovaluation Rings

Let R be a ring. Let σ be an automorphism of R. We define a σ-divided ring and prove the following. (1) Let R be a commutative pseudovaluation ring such that x ∈ P for any P ∈ Spec(R[x,σ]) . Then R[x,σ] is also a pseudovaluation ring. (2) Let R be a σ-divided ring such that x ∈ P for any P ∈ Spec(R[x,σ]). Then R[x,σ] is also a σ-divided ring. Let now R be a commutative Noetherian Q-algebra (Q i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Symbolic Computation

سال: 1998

ISSN: 0747-7171

DOI: 10.1006/jsco.1998.0227